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Abstract
Aravind and Lee-Elkin (1998 J. Phys. A: Math. Gen. 31 9829–34) gave a proof
of the Bell–Kochen–Specker theorem by showing that it is impossible to color
the 60 directions from the center of a 600-cell to its vertices in a certain way.
This paper refines that result by showing that the 60 directions contain many
subsets of 36 and 30 directions that cannot be similarly colored, and so provide
more economical demonstrations of the theorem. Further, these subsets are
shown to be critical in the sense that deleting even a single direction from any
of them causes the proof to fail. The critical sets of size 36 and 30 are shown to
belong to orbits of 200 and 240 members, respectively, under the symmetries
of the polytope. A comparison is made between these critical sets and other
such sets in four dimensions and the significance of these results is discussed.

PACS numbers: 03.65.Ta, 03.65.Aa

1. Introduction

Some time back Lee-Elkin and one of us [1] gave a proof of the Bell–Kochen–Specker (BKS)
theorem [2, 3] by showing that it is impossible to color the 60 directions from the center of a
600-cell to its vertices in a certain way. This paper refines that result in two ways. First, it shows
that the 60 directions contain many subsets of 36 and 30 directions that cannot be similarly
colored, and so provide more economical demonstrations of the theorem. And, secondly, it
shows that these subsets are critical in the sense that deleting even a single direction from any
of them causes the proof to fail. The symmetries of the 600-cell, which had been ignored in
our earlier work [1], are exploited in an essential way in arriving at these new results. Several
critical sets of directions (or rays) in four dimensions are already known. Peres [4] proposed
a set of 24 rays based on the geometry of a hypercube that possesses critical subsets of
18 and 20 rays [5–7]. Zimba and Penrose [8] proposed a set of 40 rays based on the geometry
of a dodecahedron that possesses critical subsets of 28 rays. The present work adds two new
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critical sets to that list and, in the case of the new 30-ray sets, gives a ‘parity’ proof of the BKS
theorem that is as simple as the 18-ray proof of Cabello et al [5].

This paper is structured as follows. Section 2 reviews the BKS theorem and the non-
coloring argument used to prove it. Section 3 introduces the 600-cell and describes all the
geometrical facts about it needed in the present work. It then develops criteria for picking out
subsets of its 60 directions, consisting of 36 directions in one case and 30 in another, that prove
the BKS theorem. The criticality of these subsets is established, and the number of subsets of
each type is also determined. Section 4 compares the present critical sets with the other such
sets in four dimensions and also discusses some applications of this work.

2. The Bell–Kochen–Specker (BKS) theorem

The Bell–Kochen–Specker theorem rules out the existence of deterministic noncontextual
hidden variables’ theories. A proof of the theorem in a Hilbert space of dimension d � 3 can
be given by exhibiting a finite set of rays1 that cannot each be assigned the value 0 or 1 in such
a way that (i) no two orthogonal rays are both assigned the value 1, and (ii) not all members of
a set of d mutually orthogonal rays are assigned the value 0. Bell [2] proved the theorem using
a continuum argument, but Kochen and Specker [3] later exhibited a set of 117 directions in
ordinary three-dimensional space that proved it. From a mathematical point of view, the BKS
theorem is a corollary of a more powerful theorem proved earlier by Gleason [9].

Since the original work of Bell and of Kochen and Specker, numerous other proofs of
the BKS theorem have been given in three [4], four [4–8] and higher [10–12] dimensions. Of
particular interest for this work are the two other proofs of the theorem that have been given
in four dimensions based on regular geometrical figures [4–8].

We adopt the language of Peres and speak of coloring rays red or green instead of labeling
them 0 or 1, respectively. A proof of the BKS theorem based on a given set of rays then
requires showing that it is impossible to color the rays red or green in such a way that no two
orthogonal rays are both colored green and not all members of a complete orthogonal set are
colored red. The only information needed for the proof is knowledge of the orthogonalities
between the rays. This is sometimes summarized in the Kochen–Specker diagram, a graph
whose vertices represent the rays and whose edges join vertices corresponding to orthogonal
rays. For the 600-cell, the rays form a number of complete bases (i.e. sets of four mutually
orthogonal rays) that include all orthogonalities between rays among them. This makes it
possible to replace the Kochen–Specker diagram of the rays by their ‘basis table’, and that is
what we will do in this paper.

3. The 600-cell [13] and the BKS theorem

3.1. The 60 rays of the 600-cell

The 600-cell is a regular polytope in four-dimensional Euclidean space with 120 vertices
distributed symmetrically on the surface of a four-dimensional sphere. The vertices come in
antipodal pairs, with the members of each pair being diametrically opposite each other from
the center of the sphere. Table 1 shows the coordinates of 60 of the vertices, with only one
member taken from each antipodal pair. The center of the polytope is at the origin, so the
coordinates of the omitted vertices are just the negatives of the ones shown. The directions

1 By a ‘ray’ one means an equivalence class of quantum states, all of whose members differ from each other only
by an overall phase. In a real finite-dimensional Hilbert space, such as the one dealt with in this paper, rays simply
reduce to unoriented directions in space.
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Table 1. Coordinates of 60 of the vertices of a 600-cell, with τ = (
√

5 + 1)/2, κ = 1/τ , a bar
over a number indicating its negative, and commas omitted between coordinates. The vertices are
chosen to lie on a sphere of radius 2 centered at the origin. Each entry can also be interpreted as a
ray in a real four-dimensional Hilbert space, with the numbers representing its components in an
orthonormal basis. The rays in any row of the table constitute a basis, and the entire table shows 15
of the bases formed by the 60 rays of the 600-cell. The 12 vectors in any block (together with their
antipodes) make up the vertices of a 24-cell, and the table shows how the vertices of a 600-cell can
be partitioned into those of five disjoint 24-cells.

The 60 rays of the 600-cell

1 = 2000 2 = 0200 3 = 0020 4 = 0002

5 = 1111 6 = 1111 7 = 11̄11̄ 8 = 1111

9 = 1111 10 = 11̄11 11 = 111̄1 12 = 1111̄

13 = κ0τ̄ 1̄ 14 = 0κ1τ̄ 15 = τ 1̄κ0 16 = 1τ0κ

17 = τκ01̄ 18 = 10κτ 19 = κτ̄ 1̄0 20 = 01τ̄ κ

21 = 1κτ0 22 = τ01̄κ 23 = 0τ κ̄ 1̄ 24 = κ 1̄0τ̄

25 = τ01κ 26 = 0τ κ̄1 27 = 1κτ0 28 = κ10τ̄

29 = 0κ1τ 30 = τ1κ̄0 31 = κ0τ 1̄ 32 = 1τ̄0κ

33 = τ κ̄01̄ 34 = 01τκ 35 = 10κ̄τ 36 = κτ10

37 = τ01̄κ̄ 38 = 0τκ 1̄ 39 = 1κ̄τ0 40 = κ10τ

41 = τ1κ0 42 = 0κ 1̄τ̄ 43 = 1τ̄0κ̄ 44 = κ0τ̄1
45 = 01τκ 46 = τ κ̄01 47 = κτ 1̄0 48 = 10κτ̄

49 = κ0τ1 50 = 0κ 1̄τ 51 = τ 1̄κ̄0 52 = 1τ0κ̄

53 = 10κτ 54 = τκ01 55 = 01τ κ̄ 56 = κτ̄10
57 = τ01κ̄ 58 = 1κτ̄0 59 = κ 1̄0τ 60 = 0τκ1

from the origin to the 60 vertices shown define a system of 60 rays in a real four-dimensional
projective Hilbert space. It is this system of rays that was used in [1] to prove the BKS
theorem, and that also serves as the basis for the present work.

The 600-cell is a remarkably symmetrical figure, whose symmetry group (of
14 400 elements) is transitive on all its vertices. What this means is that there is a symmetry
operation that takes any vertex into any other vertex while leaving the figure as a whole
invariant. The transitivity is not confined to the vertices but also extends to groups of vertices,
such as bases and lines (to be defined below), and we will exploit this fact below.

Because it is a complicated figure, the structure of the 600-cell is not easy to grasp even
when viewed in any of its two- or three-dimensional projections. One way of getting some
feeling for it is to see how it can be decomposed into familiar three-dimensional figures. Let
us look at the first, second, third and fourth nearest neighbors of the vertex labeled 1 in table 1.
The nearest neighbors, of which there are 12, are all the vertices whose first coordinate is τ ,
and they lie at the vertices of an icosahedron. The second nearest neighbors, of which there are
20, are the vertices whose first coordinate is 1, and they lie at the vertices of a dodecahedron.
The third nearest neighbors, of which there are 12, are the vertices whose first coordinate is κ ,
and they lie at the vertices of a second icosahedron. The fourth nearest neighbors, of which
there are 15, are the vertices whose first coordinate is 0, and they make up half the vertices of
an icosidodecahedron whose remaining vertices are the antipodes of the ones identified. The
fifth, sixth and seventh nearest neighbors are repeats of the third, second and first, respectively,
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and the lone eighth nearest neighbor is the vertex antipodal to 1. Because of the transitivity of
the polytope on its vertices, each vertex has an identical pattern of neighbors.

A still more important division of the 600-cell, for our purposes, is into the simpler four-
dimensional figures of which it is made up. Consider the 12 vertices in each of the separate
blocks of table 1. The four vertices in any row of a block are in mutually orthogonal directions
from the center of the 600-cell and, together with their antipodes, make up the vertices of a
figure known as a cross polytope or 16-cell. The eight vertices in any pair of rows of a block,
together with their antipodes, make up the vertices of tesseract or 8-cell. And all 12 vertices
in a block, together with their antipodes, make up the vertices of a 24-cell, which is so called
because its bounding cells are 24 octahedra. The blocks in table 1 illustrate the fact that the
vertices of a 600-cell can be partitioned into those of five disjoint 24-cells that have no vertices
in common.

If the entries in table 1 are interpreted as rays in Hilbert space, then the four rays in any
row form a basis of four mutually orthogonal rays. Table 1 can then be viewed as a listing of
15 of the bases formed by the 60 rays of the 600-cell. The three (mutually unbiased) bases in
any block are associated with one of the 24-cells into which the 600-cell can be decomposed.

3.2. The 75 bases of the 600-cell

A 600-cell can be partitioned into disjoint 24-cells in ten different ways. These ten ways are
shown in table 2, in which each horizontal row, as well as each vertical column, of blocks
represents such a partition. The table also demonstrates that a 600-cell has 25 distinct 24-cells
inscribed in it, with five 24-cells meeting at each vertex. Since each 24-cell gives rise to
three bases, the 60 rays of the 600-cell give rise to 75 bases altogether. It can be verified by
direct computation that there are no bases other than these and also no orthogonalities between
rays not already contained in these bases. So table 2 (the ‘basis’ table) is indeed a complete
substitute for the Kochen–Specker diagram of those rays and the only input needed for a proof
of the BKS theorem based on them.

The 60 rays and 75 bases of the 600-cell form a configuration in which each ray occurs
in five bases and each basis contains four rays. This fact is captured in the equality 75 × 4 =
60 × 5, which says that summing the rays over the bases yields each ray exactly five times in
the total count. Each ray is orthogonal to exactly 15 others, and these are just its companions
in the five bases in which it occurs. The transitivity of the rays is readily apparent in the basis
table.

For reference purposes, we attach a pair of labels (an unprimed letter from A to E and a
primed letter from A′ to E′) to each of the 24-cells in table 2. The cells in a column share a
common unprimed letter, while those in a row share a common primed letter.

3.3. Symmetries of the 600-cell

The symmetry operations of the 600-cell are (proper or improper) orthogonal transformations
in four-dimensional Euclidean space. The transformations can be characterized by their effect
on a set of vertices, such as 1, 2, 3 and 4 that are in mutually orthogonal directions from the
center of the polytope. The symmetry operations consist of all mappings of the fiducial set 1,
2, 3, 4 into the 75 sets shown in table 2, but with the following qualifications: (i) the set 1,
2, 3, 4 can be mapped into only the even permutations of the sets x, y, z,w shown in table 2,
and (ii) in any mapping allowed under (i), such as 1 → y, 2 → x, 3 → w, 4 → z, either a
positive or negative sign can be affixed in front of each of x, y, z and w. These conditions fix
the total number of symmetry operations as 75 × 12 × 24 = 14 400, the number stated earlier.
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Table 2. The 75 bases formed by the 60 rays of the 600-cell (with the rays numbered as in table 1).
Each block of 12 rays represents a 24-cell, with its three rows representing three mutually unbiased
bases. The first column of the table is essentially a repeat of table 1, while the next four columns
show four alternative decompositions of the 600-cell into five disjoint 24-cells. The rows show five
additional decompositions of the same kind, bringing the total number of such decompositions to
ten. There are 25 distinct 24-cells inscribed in the 600-cell and they give rise to 25 × 3 = 75 bases
altogether. The letters at the head of each row and column serve to label the 24-cells, with each
24-cell being labeled by an unprimed and a primed letter. Any two 24-cells have either no rays in
common (such as cells AA′ and AB′) or three rays in common (such as cells AA′ and DB′). Each
ray occurs in five 24-cells and five bases, and its 15 companions in the bases in which it occurs
are the only other rays it is orthogonal to. Thus this basis table is completely equivalent to the
Kochen–Specker diagram of this set of rays.

The 75 bases of the 600-cell

A B C D E

1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52
A′ 5 6 7 8 38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21

9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14 34 19 48 54

13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4
B′ 17 18 19 20 50 36 10 37 30 59 45 7 48 5 32 58 11 38 49 33

21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6

25 26 27 28 55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16
C′ 29 30 31 32 2 48 22 49 42 11 57 19 60 17 44 10 23 50 1 45

33 34 35 36 20 9 41 59 37 56 14 5 7 13 54 38 58 43 12 18

37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16 20 5 51 28
D′ 41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57

45 46 47 48 32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30

49 50 51 52 19 30 39 4 10 48 27 16 45 11 15 28 32 17 3 40
E′ 53 54 55 56 26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9

57 58 59 60 44 33 5 23 1 20 38 29 31 37 18 2 22 7 36 42

In the projective Hilbert space of rays, where there is no distinction between a direction and
its opposite, the number of symmetry operations goes down by a factor of 2 to 7200.

The symmetries of the 600-cell have been exploited in setting up table 2. The rows of the
table are cycled into each other by the period-5 rotation |13〉 〈1| + |14〉 〈2| + |15〉 〈3| + |16〉 〈4|
and the columns by the period-5 rotation |31〉 〈1| + |42〉 〈2|− |51〉 〈3| + |16〉 〈4|, where the bras
and kets are row and column vectors representing the rays. An alternative way of describing
these rotations is by specifying the permutations they perform on the rays as one goes from one
row (or column) to the next. The permutations are easily picked out by comparing neighboring
rows or columns. For either the rows or the columns, the permutation can be written as a
product of 12 cycles of length 5 each. The permutation that cycles the rows into each other is
even more simply described: simply add 12, modulo 60, to the numbers in any row to generate
the numbers in the row below it.

3.4. The 24-cell: points, lines and Reye’s configuration

Any 24-cell can be interpreted as a ‘Reye’s configuration’ [14], which is a set of 12 ‘points’
and 16 ‘lines’ with the property that three ‘points’ lie on every ‘line’ and four ‘lines’ pass

5
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Table 3. The box at the top shows the 12 rays a, b, . . . , l of a 24-cell, with each row representing
a basis. Shown below are the 16 ‘lines’ of the 24-cell, with each line being indicated by the three
rays (or ‘points’) on it. This template can be used to generate the 16 lines associated with each of
the 24-cells in table 2, and this has been done in table 4.

Lines of the 24-cell

a b c d

e f g h

i j k l

a, e, i b, e, j c, e, k d, e, l

a, f, j b, f, i c, f, l d, f, k

a, g, k b, g, l c, g, i d, g, j

a, h, l b, h, k c, h, j d, h, i

through every ‘point’. The quotes have been put around ‘points’ and ‘lines’ to indicate that
these entities need not literally be geometrical points or lines but can be any entities that
satisfy the stated incidence relations. A 24-cell can be interpreted as a Reye’s configuration
if each of its 12 rays is regarded as a ‘point’ and any three rays as a ‘line’ if the components
of one can be expressed as a linear combination of those of the other two. To verify the
truth of this assertion, consider the rays 1–12 associated with the first 24-cell of table 1. It is
straightforward to check that these rays, interpreted as ‘points’, make up the 16 ‘lines’ given
by the triples {1, 5, 9}, {1, 6, 10}, {1, 7, 11}, {1, 8, 12}, {2, 5, 10}, {2, 6, 9}, {2, 7, 12}, {2,
8, 11}, {3, 5, 11}, {3, 6, 12}, {3, 7, 9}, {3, 8, 10}, {4, 5, 12}, {4, 6, 11}, {4, 7, 10} and {4,
8, 9}. Table 3 gives a simple prescription for generating the lines associated with any of the
24-cells in table 2.

Since the 600-cell contains 25 different 24-cells within it, and each 24-cell gives rise to
16 lines, it might be thought that the 600-cell has 400 lines in it altogether. However it turns
out that each line is shared by two 24-cells, so there are just 200 unique lines in all. The lines
also come in dual pairs, with all the rays on any line being orthogonal to all the rays on its
dual. The 200 lines thus break up into 100 dual pairs. A complete listing of the lines, by dual
pairs, is shown in table 4. The letters labeling the rows and the columns help to identify the
24-cells in which each of the lines of the dual pair originates. Table 4 shares in common with
table 2 the feature that each of its rows and columns of blocks contains the numbers from 1 to
60 exactly once.

3.5. Critical sets of 30 rays

These critical sets are obtained by keeping only the rays belonging to one of the chains of dual
line pairs shown in table 5. On applying the procedure explained in the caption of table 5 to
table 4, one can pick out all the 30-ray critical sets. There are 12 such sets for each row and
column of table 4, and therefore 240 such sets altogether.

It remains to show that these sets are indeed critical. This involves showing, first, that any
such set cannot be properly colored and, secondly, that it becomes colorable if even a single
ray is deleted from it. It is sufficient to demonstrate these properties for any one of the 30-ray
sets since the same conclusions then follow for all the other sets from symmetry.

Consider the 30-ray set obtained by applying the chain AB-BC-CD-DE-EA to the first
row of table 4. The 30 rays so obtained form 15 complete bases, which are shown in bold in
table 6. The fact that each ray occurs twice in these bases suffices to give a parity proof of
the BKS theorem. To see why, recall, from section 2, that the BKS theorem can be proved
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Table 4. The 200 lines of the 600-cell, with each box showing a dual pair (displayed vertically).
The labels at the head of each row and column serve to identify the 24-cells in which the lines
originate according to the following rule: the left line originates in the cells XU′ and YV′ and the
right line in the cells XV′ and YU′ (where X and Y are the upper and lower column labels and U′
and V′ the left and right row labels). As an example, the line {3, 8, 10} originates in the cells AA′
and BB′ and its dual {16, 17, 24} in the cells AB′ and BA′. Note that the lines in each column span
all 60 rays of the 600-cell without any overlap, and that the same is true of the lines in the rows.

Lines of the 600-cell

A A A A B B B C C D
B C D E C D E D E E

A′ B′ 3 16 2 13 1 14 4 15 25 28 35 36 31 29 32 30 33 34 27 26
8 17 7 18 5 20 6 19 45 47 42 43 38 37 39 40 41 44 46 48

10 24 12 22 9 23 11 21 51 50 58 57 56 54 55 53 60 59 49 52

A′ C′ 2 25 3 28 4 27 1 26 24 22 17 20 16 15 13 14 18 19 23 21
6 31 5 32 7 30 8 29 42 41 38 40 45 48 47 46 39 37 43 44
9 35 11 33 10 36 12 34 56 55 51 49 58 59 60 57 50 52 53 54

A′ D′ 1 38 4 39 3 40 2 37 17 18 16 14 24 21 22 23 13 15 20 19
7 42 8 41 6 43 5 44 31 32 25 27 35 34 33 36 28 26 30 29

11 45 9 47 12 46 10 48 58 60 56 53 51 52 50 49 55 54 57 59

A′ E′ 4 51 1 50 2 49 3 52 16 13 24 23 17 19 18 20 22 21 14 15
5 56 6 55 8 53 7 54 35 33 31 30 25 26 28 27 32 29 36 34

12 58 10 60 11 57 9 59 38 39 45 46 42 44 41 43 47 48 40 37

B′ C′ 15 28 14 25 13 26 16 27 3 2 10 9 8 6 7 5 12 11 1 4
20 29 19 30 17 32 18 31 37 40 47 48 43 41 44 42 45 46 39 38
22 36 24 34 21 35 23 33 57 59 54 55 50 49 51 52 53 56 58 60

B′ D′ 14 37 15 40 16 39 13 38 8 7 3 1 10 11 12 9 2 4 5 6
18 43 17 44 19 42 20 41 36 34 29 32 28 27 25 26 30 31 35 33
21 47 23 45 22 48 24 46 54 53 50 52 57 60 59 58 51 49 55 56

B′ E′ 13 50 16 51 15 52 14 49 10 12 8 5 3 4 2 1 7 6 9 11
19 54 20 53 18 55 17 56 29 30 28 26 36 33 34 35 25 27 32 31
23 57 21 59 24 58 22 60 43 44 37 39 47 46 45 48 40 38 42 41

C′ D′ 27 40 26 37 25 38 28 39 9 11 6 7 2 1 3 4 5 8 10 12
32 41 31 42 29 44 30 43 15 14 22 21 20 18 19 17 24 23 13 16
34 48 36 46 33 47 35 45 49 52 59 60 55 53 56 54 57 58 51 50

C′ E′ 26 49 27 52 28 51 25 50 6 5 2 4 9 12 11 10 3 1 7 8
30 55 29 56 31 54 32 53 20 19 15 13 22 23 24 21 14 16 17 18
33 59 35 57 34 60 36 58 48 46 41 44 40 39 37 38 42 43 47 45

D′ E′ 39 52 38 49 37 50 40 51 1 4 11 12 7 5 8 6 9 10 3 2
44 53 43 54 41 56 42 55 21 23 18 19 14 13 15 16 17 20 22 24
46 60 48 58 45 59 47 57 27 26 34 33 32 30 31 29 36 35 25 28

using these 30 rays if it can be shown that they cannot each be colored red or green in such
a way that the 15 bases formed only of them each contain one green ray and three red rays.

7
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Table 5. A 30-ray critical set can be obtained by keeping all the rays in any row of table 4 belonging
to one of the chains of dual line pairs shown below. A pair of letters, such as AB, indicates the dual
line pair, in the selected row, lying in the column headed by those letters. For example, if the chain
AB-BE-EC-CD-DA is applied to the third row, the label AB picks out the rays 1, 7, 11, 38, 42 and
45, BE picks out the rays 24, 35, 51, 21, 34 and 52, and so on. The chain AB-BC-CD-DE-EA
applied to the first row yields the critical set shown in bold in table 6. The two chains listed on the
same line are complementary in the sense that they have no rays in common (and therefore span
all 60 rays when taken together). If all the letters below are replaced by their primed counterparts
and the chains are applied to the columns (in the same manner as the rows), the remaining 30-ray
critical sets result.

Patterns of 30-ray critical sets

AB-BC-CD-DE-EA AC-CE-EB-BD-DA
AB-BD-DC-CE-EA AC-CB-BE-ED-DA
AB-BC-CE-ED-DA AC-CD-DB-BE-EA
AB-BE-EC-CD-DA AC-CB-BD-DE-EA
AB-BD-DE-EC-CA AD-DC-CB-BE-EA
AB-BE-ED-DC-CA AD-DB-BC-CE-EA

Table 6. Shown in bold are the 15 bases formed by the 30-ray critical set picked out by applying
the chain AB-BC-CD-DE-EA of table 5 to the first row of table 4. Shown in italics are the
15 bases formed by the 30 rays of the complementary critical set obtained by applying the chain
AC-CE-EB-BD-DA to the first row of table 4. Either set of 15 bases provides a parity proof of
the BKS theorem. There are a total of 120 complementary pairs of 30-ray critical sets of the type
shown here.

Two complementary 30-ray critical sets

A B C D E

1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52
A′ 5 6 7 8 38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21

9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14 34 19 48 54

13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4
B′ 17 18 19 20 50 36 10 37 30 59 45 7 48 5 32 58 11 38 49 33

21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6

25 26 27 28 55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16
C′ 29 30 31 32 2 48 22 49 42 11 57 19 60 17 44 10 23 50 1 45

33 34 35 36 20 9 41 59 37 56 14 5 7 13 54 38 58 43 12 18

37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16 20 5 51 28
D′ 41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57

45 46 47 48 32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30

49 50 51 52 19 30 39 4 10 48 27 16 45 11 15 28 32 17 3 40
E′ 53 54 55 56 26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9

57 58 59 60 44 33 5 23 1 20 38 29 31 37 18 2 22 7 36 42

However the impossibility of this task is easily seen because, on the one hand, there must be
an odd number of green rays in these bases (since there must be exactly one green ray per
basis) but, on the other hand, there must also be an even number of green rays (since each
green ray occurs twice).
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Table 7. A 36-ray critical set can be obtained by keeping all the rays in any row of table 4
belonging to one of the chains of dual line pairs shown below. The procedure for constructing
these sets is identical to that for the 30-ray sets explained in the caption to table 5. If all the letters
are primed and the chains are applied to the columns rather than the rows, the remaining critical
sets are obtained.

Patterns of 36-ray critical sets

AC-AD-AE-BC-BD-BE
AB-AD-AE-CB-CD-CE
AB-AC-AE-DB-DC-DE
AB-AC-AD-EB-EC-ED
BA-BD-BE-CA-CD-CE
BA-BC-BE-DA-DC-DE
BA-BC-BD-EA-EC-ED
CA-CB-CE-DA-DB-DE
CA-CB-CD-EA-EB-ED
DA-DB-DC-EA-EB-EC

A proof of criticality is easily given if one uses the fact that the 30-ray set has a
symmetry group that is transitive on all its members (just like the original 60-ray set).
Because of this, it suffices to delete any one ray and show that the rest become colorable.
To this end, we note that deleting ray 3, and coloring 25, 45, 55, 16, 4, 32 and 49 green
and all the other rays red achieves a satisfactory coloring of all bases (including partially
deleted ones) involving any of the 29 surviving rays.

An interesting feature of the 30-ray sets is that they come in complementary pairs having
no rays in common (and therefore spanning all 60 rays when taken together). A pair of such
sets is shown in table 6, with the 15 bases made up by the rays of the second set being shown
in italics. There are 120 such complementary pairs of 30-ray sets within this 60-ray system.

3.6. Critical sets of 36 rays

These critical sets are obtained by keeping only the rays belonging to one of the chains of dual
line pairs shown in table 7. The procedure for constructing these sets is similar to that for the
30-ray sets. Each row and column of table 4 yields ten critical sets of this type, and so there
are 200 such critical sets altogether.

As before, it suffices to pick a single 36-ray set and show that it is both uncolorable and
critical, and symmetry will then guarantee the result for the other sets. We pick the set obtained
by applying the first chain in table 7 to the first row of table 4. The 36 rays thus selected are
shown in bold in table 8. Leaving aside the nine bases in which none of these rays occur, the
remaining bases are of three types: (i) 18 ‘intact’ bases involving only the 36 surviving rays,
(ii) 12 ‘almost intact’ bases, each made up of three surviving rays and one deleted ray, and (iii)
36 ‘half intact’ bases, each made up of two surviving rays and two deleted rays. Unlike the
case of the 30-ray sets, no parity proof of the BKS theorem is possible in this case. However,
table 9 gives a straightforward ‘proof-tree’ argument demonstrating the uncolorability of these
rays. This argument makes use of only the 30 ‘intact’ and ‘almost intact’ bases and ignores
the ‘half intact’ bases. The reason for ignoring the latter bases was to make the proof rely on
as few orthogonalities (between the surviving rays) as possible.

An alternative proof of the uncolorability of the 36-ray set, that again makes use of
only the 30 bases mentioned above, can be given by noting that the 18 ‘intact’ bases can be

9
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Table 8. Shown in bold are the 36 rays picked out by the line chain AC-AD-AE-BC-BD-BE of
table 7 applied to the first row of table 4. These rays make up 18 ‘intact’ bases, 12 ‘almost intact’
bases (containing a single deleted ray) and 36 ‘half intact’ bases (containing two deleted rays).

A 36-ray critical set

A B C D E

1 2 3 4 31 42 51 16 22 60 39 28 57 23 27 40 44 29 15 52
A′ 5 6 7 8 38 24 58 25 18 47 33 55 36 53 20 46 59 26 37 21

9 10 11 12 56 45 17 35 13 32 50 41 43 49 30 14 34 19 48 54

13 14 15 16 43 54 3 28 34 12 51 40 9 35 39 52 56 41 27 4
B′ 17 18 19 20 50 36 10 37 30 59 45 7 48 5 32 58 11 38 49 33

21 22 23 24 8 57 29 47 25 44 2 53 55 1 42 26 46 31 60 6

25 26 27 28 55 6 15 40 46 24 3 52 21 47 51 4 8 53 39 16
C′ 29 30 31 32 2 48 22 49 42 11 57 19 60 17 44 10 23 50 1 45

33 34 35 36 20 9 41 59 37 56 14 5 7 13 54 38 58 43 12 18

37 38 39 40 7 18 27 52 58 36 15 4 33 59 3 16 20 5 51 28
D′ 41 42 43 44 14 60 34 1 54 23 9 31 12 29 56 22 35 2 13 57

45 46 47 48 32 21 53 11 49 8 26 17 19 25 6 50 10 55 24 30

49 50 51 52 19 30 39 4 10 48 27 16 45 11 15 28 32 17 3 40
E′ 53 54 55 56 26 12 46 13 6 35 21 43 24 41 8 34 47 14 25 9

57 58 59 60 44 33 5 23 1 20 38 29 31 37 18 2 22 7 36 42

satisfactorily colored in a total of 448 different ways, but that in each of these cases at least
one ‘half intact’ basis has more than one green ray in it. We wrote a computer program that
allowed us to arrive at this conclusion.

Since the 36-ray set (like the 30-ray set) is transitive on all its rays, its criticality can be
established by deleting any one ray and showing that the remainder can be properly colored.
If one deletes ray 1, and colors rays 11, 4, 22, 54, 18, 5, 35 and 25 green and all the others
red, it is easy to check that all the 66 bases involving any of the 35 surviving rays are properly
colored.

4. Discussion

We have shown that the system of 60 rays derived from the vertices of a 600-cell possesses
30-ray and 36-ray critical sets. Although we think it highly unlikely that smaller critical
sets exist, we do not have a proof of this conjecture. Either a proof of the conjecture or a
counterexample to it would be of interest. A recent paper by Pavicic et al [28] uses lattice
theory and MMP diagrams to determine all Kochen–Specker sets of rays that can be obtained
as subsets of 24 rays with components from the set {−1, 0, 1}. It is possible that an extension
of these methods might allow a resolution of our conjecture.

Table 10 lists the smallest known critical sets of rays in four dimensions. They all occur
as subsets of one of three systems of rays: (i) the 24 rays of Peres [4], derived from a pair
of dual 24-cells, (ii) the 40 rays of Zimba and Penrose [8], derived from the geometry of a
dodecahedron, and (iii) the 60 rays of the present work, derived from the vertices of a 600-cell.

The smallest of these sets are the 18-ray sets, which occur as subsets of the 24 rays of
Peres. They were originally discovered through a computer search [5], but later a simple
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Table 9. ‘Proof-tree’ demonstrating the impossibility of satisfactorily coloring the 36-ray set
shown in bold in table 8. The proof uses only the 18 ‘intact’ and 12 ‘nearly intact’ bases of table 8.
The proof begins by looking at the ‘intact’ basis 2 48 22 49. One ray in it must be colored green,
and we can choose it to be 2 without loss of generality because the other rays can be rotated into
2, by suitable symmetry operations of the polytope, while maintaining the invariance of the 36-ray
set as a whole. Coloring 2 green forces 22 to be red. The basis 22 7 36 42 must then have one of
the rays 7, 36 or 42 colored green. The different branches of the proof-tree show what happens if
one makes different choices for the green rays at various points of the coloring process. Unforced
green rays are not underlined, but forced ones are. The branching of the proof-tree stops when
green rays become forced, and every terminal branch leads eventually to a basis in which all the
rays are colored red (this basis is shown in bold at the end of the branch). Thus no viable coloring
of these rays is possible and the BKS theorem is proved.

BKS proof based on a 36-ray set

Green rays All-red basis

2 7 10 19 53 3 24 46 52
2 7 16 58 21 46 19 8 17 26 49
2 36 24 18 6 11 3 17 32 40
2 36 24 27 6 39 12 11 19 42 57
2 36 52 8 12 10 16 27 48
2 36 52 16 30 12 11 19 42 57
2 36 52 16 55 19 8 17 26 49
2 42 30 12 52 4 15 36 58
2 42 30 46 8 21 40 10 16 27 48
2 42 30 46 16 18 4 15 36 58
2 42 39 10 18 8 17 26 49
2 42 39 24 12 15 6 21 35 43

Table 10. The smallest known critical sets of rays in four dimensions.

Critical sets of rays in four dimensions

Rays Critical set size No of critical sets References

24 rays of Peres 18 16 [5]
20 96 [6]

40 rays of Zimba–Penrose 28 5 [8]
32 45 [15]

60 rays of the 600-cell 30 240 Present work
36 200

construction was found for them [7]: they can be obtained by omitting all rays lying on a dual
pair of lines, one from each of the dual 24-cells defining the system. Because each 24-cell
has 16 lines in it, and each line in a cell has a unique dual in the other, there are exactly 16
such critical sets. It was this simple observation that motivated the present work. Since a
600-cell contains a large number of 24-cells within it, we felt that the strategy of canceling
dual pairs of lines from different 24-cells might again prove useful in leading to critical sets.
This indeed turned out to be the case, but a couple of differences between the 600-cell and the
Peres system should be kept in mind. First, the 600-cell does not contain the dual of any of its
24-cells, and so does not contain the Peres rays as a subset (else its noncolorability would be
trivial). And, secondly, the critical sets result not from the cancellation of a single dual pair of
lines but four pairs (for the 36-ray sets) or five pairs (for the 30-ray sets).
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The Zimba–Penrose system is different from the other two systems in a couple of ways.
First, its 40 rays are essentially complex, whereas the rays in the other two systems can be
chosen to be purely real. And, secondly, Reye’s configuration does not make its appearance
in this system, although it does have several other point-line configurations of interest, as
noted by Zimba and Penrose [8]. Zimba and Penrose pointed out how the five 28-ray critical
sets could be extracted by using the fact that there are five ways of inscribing a cube in a
dodecahedron. We recently discovered how to obtain the 32-ray critical sets by canceling dual
pair of lines, although each line now consists of four points [15].

The main interest of the new results presented here stems from the expanded view they give
of the tension between four-dimensional geometry and quantum noncontextuality. Although
three dimensions are sufficient to rule out noncontextuality, ascending to one higher dimension
makes the task much simpler. This is most strikingly evident from the fact that parity proofs
of the BKS theorem first become possible in four dimensions. The first, second and fifth
critical sets in table 10 yield three such proofs, and they are much simpler than any of the
three-dimensional proofs (although it should be added, in fairness, that the importance and
geometric interest of finding purely three-dimensional proofs is undeniable). It is also worth
remarking that while all the more recent three-dimensional proofs make use of cubic symmetry,
the four-dimensional proofs exploit different symmetries (namely, those of the icosahedron
and enlargements of the 24-cell). The way in which dimensionality and symmetry influence
the existence of critical sets is a theme that has been only partially explored to date [12, 16,
17], and it is likely that there are some interesting results that remain to be discovered here.

We have mentioned only the BKS theorem in this paper. However it should be added that
the present proof, like all proofs of the BKS theorem in any dimension, can be extended to a
proof of Bell’s nonlocality theorem by making use of the right sort of entanglement [18].

Recently there has been considerable interest in experimental tests of quantum
noncontextuality [19–24]. Cabello [19] and Badziag et al [20] have shown how to derive a
variety of inequalities that are satisfied by noncontextual theories but violated by all quantum
states, even ones thought to have a totally classical character. Experiments with ions [23] and
photons [24] have shown a violation of some of these inequalities, thereby casting a new light
on the nonclassicality of even unentangled quantum states.

The BKS proof of this paper can be used to derive several further inequalities of the
type proposed in [19, 20]. The interest of this exercise would be to see if the gap between
noncontextual theories and quantum mechanics can be made wider than in any of the cases
studied hitherto. Using a 30-ray critical set of the 600-cell, together with the 15 complete
bases in which these rays occur, one can construct an inequality similar to equation (1) in [19].
The upper bound of this inequality for noncontextual theories is 13, but quantum mechanics
predicts that the inequality is actually an equality with a value of 15 (independent of the state
considered). Thus, there is again a difference of 2 between the two predictions, as was the
case with the 18 vectors and 9 bases treated by Cabello [19]. However [19] points out that if
one chooses all the 24 rays of Peres, along with the 24 bases formed by them, the gap between
noncontextual theories and quantum mechanics becomes wider. This is attributed to the fact
that the 24-ray set is not critical but contains a large number of critical subsets within it. In the
same vein, it is possible that if one uses all 60 rays and 75 bases of the 600-cell to construct
an inequality, the gap between noncontextual realism and quantum mechanics can be made
even larger because of the large number of critical subsets involved in the present case. An
experimental realization of this configuration may not be easy but it may still be interesting,
from a theoretical point of view, to see how hard one can push on geometry to drive a wedge
between noncontextual realism and the quantum theory.
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BKS proofs are also of interest in connection with quantum ‘pseudo-telepathy’ [25–27],
two-party tasks that cannot be completed with the aid of classical resources alone but require
the use of entanglement. The present proof provides a new instance of such a task. Whether
there are any further applications of the new critical sets found here remains to be seen.
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